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ABSTRACT.  An effecuive approach lor solving (he three-dimensional Dirac
equation for spherically symmetric local mteractions. which we have introdueed
recently, is reviewed. The merit of the approach is in producing Schradinger-like
equation  for the spinor components that could simply be solved by
correspondence with well-known exactly solvable non-relativisue problems.
Taking the nonrclativistic limit reproduces the nponrelativistic problem. The
approach has been used successfully in establishing the relativistic extension of
all clagses of shape invariant potentials as well as other exactly solvable
nonrelativistic problems. These ctude the Coulomb. Osciltaor, Scarl, Paschl-
Teller. Woods-Saxon, ete.

PACS numbers: 03.65.Ge, (12.30.Gp, 03.65.Db, 03.65.Ca

I. Introduction

In recent decades (he sciemific community made remarkahle progress in the
advancement of human knowledge and in the technologieal achievements hy working
relentlessly in large collaborations on the solutions of complicated realistic problems.
Examples ot such accomplishimcents in physies are cvident in the unprecedented growth of
findings and discoveries tn a wide range of fields mncluding material science, elementary
particles, and information theory. Consequently. one may choose not o disagree with the
view Lhat working. as individuals or in very small groups, on much simpler (although,
fundamental) problems like exact solutions of the wave equation might not he rewarding.
Moreover, il is sonctimes argued that such exact solutions are by some (debatable)
definilions “trivial”. Nevertheless, it 1s a fact that exact solutions are important because of
the conceplual understanding of physies thal can only be brought about by the analysis of
such solutions. Many of us, including some ol our undergraduate students, appreciate the
lessons we all learned from exact solutions of simple problems like the harmonic oscillator
and thc¢ Coulomb problem. Such lessons include, but not limited (o: the vivid under-
standing of the uncertainty principle, creation and annihilation of states, correspondence
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principle, wave-particle duality, energy of the vacuum, spectruin degeneracy, chemical
bonds, ete. In fact, exacl solutions are valuable means for checking and improving models
and numerical methods being introduced ftor solving complicated physical problcms.
Furthermore, in some [imiting cases or for some special circumstances they may constitutc
analytic solutions of realistic problems or approximations thereof. In nonrelativistic
quantum mechanics, the search for exact solutions of the wave equation was carried out
over the years by many authors where several classes of these solvable potentials are
accounted for und tabulaled (see, for cxample. the references cited in {1]). Most of the
known exactly solvable prohlems fall within distinet classes of what is referred to as
“shape invariant potentials”. Supersymmetric quantum mechanics [2]. potentiul algebras
[3]. and “point canonical transformations”™ [4] are three methods among many which are
uscd in the search for exact solutions of thc wave equation. These developments were
cxtended 10 other classes of conditionally exactly [5] and quasi exactly [6] solvable
problems wherc all or. respectively, part of the energy spectrum is known.

The relativistic cxtension of these formulations, on the other hand, remaincd for a
long time only partially developed. Despite all the work ihat has heen done over the years
on the Dirac equation, its cxactl solution for local interaction has been limited 0 a very
small sct of potentials. Sinec the original work of Dirac, In the carly purt of last century, up
until 1989 only the relativistic Coulomb problem was solved exactly. In 1989, the
relativistic extension of the oscillator problem (Diruc-Oscillatory was {inally formulated
and solved by Moshinsky and Szczepaniak [7]. Recently, and in a series ol articles [8-11],
we presented an effective approach lor solving the three dimensional Dirac equation for
spherically symmetric potential interaction. The {irst step in the program started with the
realization (hat the nonrelativistic Coulomb. Oscillator, and S-wave Morse problemns
helong (o the same class ol shape invariant potenuals which carries a representation ol
SO(2.1) Lie algebra. The solutions ot these problems could be mapped into one unother by
point canonical transformations. Therefore, (he lact that the relativistic version of the first
iwo probicms (Diruc-Coulomh and Dirac-Oscillator) were solved exaclly makes the
solution of the third. in principle, feasible. Indeed, 1he relativistic s-wave Dirac-Morse
problem was formulated and solved in Ref. 8. The bound slale energy spectrum and spinor
wavefunctions were obtained. Taking (he nonrelativistie Iimit reproduces the familiar s-
wave Schrodinger-Morse problem. Motivated hy these Tindings, the same approach was
applied successfully in obtaining solutions for the relativistic extension of yet another class
ol shape invariant potentials [9]. These ineluded (he Dirac-Scarl. Dirac-Rosen-Morse 1 &
11, Dirac-Poschl-Teller, and Dirac-Eckart potentals. Furthermore, using the  same
formalism quasi exactly solvable systems al rest mass energics were oblained for a large
class of power-law relativistic potentials {10]. Quite recently, Guo Jian-You e¢r af
succeeded in constructing solutions for the relativistic Dirac-Woods-Saxon and Dirac-
[Tulthén problems using the same approach [12]. o the (ourth and Tast article of the series
in our program of searching for exact selutions to the Diruc equation [[1], we found a
special graded extension of SO(2,1) Lie algehra. Realization of this superalgebra hy 2x2
matrices of dilferential operators acting 0 the two componcnl spinor spiace  wis
constructed, The lincar span of this graded algebrua gives the canonical form of the radial
Dirac Hamiltonian. It turmed out that the Dirac-Oscillator class, which also includes the
Dirac-Coulomb and Dirac-Morse. carries a representation ol this supersymmelry.

The central idea in the approach i1s to separate the variables such that the 1wo coupled

lirst order difterential equations resulting from the radial Dirac equation generate
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Schrédinger-like equation, This makes the solution of the relativistic problem easily
attainable by simple and direct correspondence with well-known exactly solvable
nonrelativistic problems. The correspondence results in a map among the relativistic and
nonrclativistic parameters. Using this map and the known nonrclativistic cnergy spectrum
one can easily and directly obtain the relativistic spectrum. Moreover, the two components
of the spinor wavcfunction are obtained from the nonrelativistic wavefunction using the
same paraneter map. There are two main ingredients in the formulation of the approach
that makes it work. The first is a unitary transformation of the Dirac equation which, of
course, reduccs to the identity in the nonrelativistic lunit. The second 1s the introduction, in
a natural way, of an auxiliary potential component which 1s constrained to depend, in a
particular way, on the independent potential function of the problem.

The approach is initiated by writing the relativistic Hamiltonian for a Dirac spinor
coupled “non-minimally” to a four-component polential {4, A). Spherical symmetry is

imposed on the interaction by restricting the potential o the form (AO,A) =
[V(r), FeW(r)]. where ¢ is the speed of light and £ is the radial unit veetor. V(r) and Wir)
arc real radial functions referred (o as the even and odd components of the relativistic
potential, respectively. The resulung Dirac equation gives two coupled first order
differential equations for the (wo radial spinor components. By eliminaling one component
we oblain @ second order differential cquation for the other. The resnlting equation may
turn out not to be Schridinger-like, Le. it may contain lirst order derivatives. Obtaining a
Schradinger-like wave equation 1s desirable because 1t resulls in a substantial reduction of
the elforts needed for getting the solution. It puts at our disposal a varicly ol well
established technigues 1o be employed in the analysis and solution of the problem. These
tcchniques have been well developed over tbe years by many researchers in dealing with
the Sturm-Liouville problem and the Schridinger equation. One such advantage, which
will become clear shortly. is the resulting map between the parameters ol the relativistic
and nonrelativistic problems. This parameter map could be used in obtaining, lor exainple,
the relativistic energy spectrum in a simple and straight-forward manner from the known
nonrelativistic spectrum. A global unitary transformation is applied to the Dirac equation
1o eliminate the first order derivative. The Schridinger-like requircment produces a
constraint in the form of a linear relation between the two potential components as
V~W+x/r, where « v the  spin-orbit  quantum  number  defined  as
K=t(j+%R)==11,£2,.. for / = ;1 V2 This will result in o Hamiltonian that will be written
in terms of only onc arbitrary potential function: cither V(r) or W(r). Meeling be
Schrodinger-like requirement is generally possible only because of the degree of exibility
brought about by the presence of an auxiliary potential component. However, the unitary
transformation is not necessary when Vo= 0. This vcorresponds Lo the case of Lhe
superpotentials U+ U7, The Dirac-Oscillator, where W ~ r, is an cxample of such a case.
The Dirac-Scarl and Dirac-Poschl-Teller potentials are also two among other such
examples.

The paper 1s organized as tollows. In Scc. 1l we set up the (bree dimensional Dirac
P& g [
equation for a spinor coupled 1n a non-minimal way to the four-potential {4,,A). Spherical

symmetry is imposed reducing the problem to a solution of the 2x2 radial component of
the Dirac equation. An overview of the technical details of the formalism will be presented
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in Sec. IlI. Implementation of the approach on selected potential examples will be given in
the same section, while 1 comprehensive list will be displayed in a tabular form.

I1. The three-dimensional dirac equation
Dirac cquation is a relativistically covariant first order differential equation in four
dimensional space-time for a spinor wavefunction . For a free structureless particle it
reads (r.'h Y, —mc);;/ =0, where m is the rest mass of the particle and ¢ 1s the speed of
light. The summation convention over repeated indices is used. That is. y*d, =
1 = _ 3

A _ 20 s R | a ey { ,u} . " . . Al .
z#:[)y d,=ydy+yo=y v A V' &€ four constant square matrices
satisfying the anticommutation relation {y-“,}?'}:y”}/#}/y":zg’“", where G is the
metric of Minkowski space-time which is equal to diag(+.— — -). These are unimodular
even dimensional malrices with a minimum dimension of four corresponding 1o spin Y2

representation of the Lorentz space-time symmelry group. A four-dimensional matrix
representation that satisties the anticommutation relation is chosen as follows:

v {1 - [ 0@a "

7 —(0—1] . 7‘(—5 n] (2.1)
where 7 15 (he 2X2 unil malrix and & are the three 2x2 hermitian Pauli matriees. Now, if
the Dirac particle carries an electric charge ¢, then it will eouple (o the four-component
clectromagnetic polential A, = (A, .A). Gauge invariant coupling is accomplished by the

“minimal™ substitution ¢, =9, +if{_/lﬂ . It ransforms the [ree Dirac equation Lo

¥

[fﬁy’”(a +r—~—.A )—m('},{/=0 (2.2)
where 15 a four-component spinor. When written in details, this equation reads
ithy'o = (—f’ﬁ}? V+ %7 A+ LyYA+ m(_‘) W (2.3)

Multiplying both sides by cy” gives

fhg—;y:(—i.ﬁ('ﬁ-‘?+fﬁ‘j+w{] +m('1ﬁ);{/ (2.4)
!

where @ and S are the hermitian matrices
= = 0d
X = ;})}}/:(6%) and ﬂ }')} ([)_ ) {25)

For time independent potentials, equation (2.4) gives the following matrix representation
of the Dirac Hamiltonian (in units of me™)

— A+ —i%a V+——J A
H= " (2.6)
—iLFV+5 A |

me me?
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* + e
YD vy - E gm0 =0 3.4)
a’r‘ re s
where
V= LW RGN o 2o as

and y=Cxk = xJ1 — (X&) plays Lhe role of angular momentum in the relativistic theory, In
the nonrelativistic limil (A > 0), e=1+AE and (= I——K & . Therefore, Eq. (3.3)
shows that @~ is the larger of the two relativistic spmor components (i.c.. ¢ is the
component that survives the nonrelativistic limit, whereas @71 Ag™ — 0). Consequently, if

we [avor the upper spinor componenl then our choice of sign in the transformation
parameler constraint is the top + sign. That is, we choose sin(An) = +&& .

In all relativistic problems that have been successfully tackled so far, Eq. (3.4) is
solved by correspondence with well-known exactly solvable nonrclativistic problems. This
correspondence resulls in a parameler map (bat rclates the two problems. Now, i the
nonrelativistic prohlem is exactly solvable, then using this parameter map and the known
nonrelativisiic energy spectrum one can easily oblain the relativistic spectrum. In [uct, the
relativistic extension of any known dynamical relationship in the nonrelativistic theory
could casily be obtuined by this correspondence map. The Green's function, which has a
prime significance in the caleulation of relalivistic processes, is such an example [14].
Moreover, the spinor component wavelunction is also obtained [rom the nonrelativistic
wavelunction using the same parameler map.

An aliernalive, but equivalent, approach to the one given above is 1o postulite the
one-parameter two-component equation (3.1) as the relativistic wave equation and show
that in the nonrelativistic limit (A — 0) the nonrelativistic problem is recovered. However,
in this case. one cannot claim that the relativistic problem is a unique extension of the
nonrelativistic one.

To illustrate the implementation steps ol the approach we will now apply it on some
selecled exumples.

A. The Dirac-Coulomb problem

For this problem W(r) = 0. Therefore, the Schridinger-like requirement gives (he
potential constraint that yields V(»)y = Ex/r =7/r where Z is the spinor charge. This
pives £=Z/x relating the tansformation parameter to the physical constants of the
problem as sin(A)=AZ/x = aZ/x, where s the (ine structure constant and Z is the
dimensionless spinor churge in units of ¢. The wave cquation (3.4}, Tor the upper spinor
component reads

y(yH) Z.&‘ 5‘—1

dr’ r r

¢ (r)=4 (3.0)
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where  y=xy\fJl—(RZ/x)" = xJl—(@Z/x)* is the relativistic angular momentum.

Comparing this equation with the nonrelativistic Schrédinger-Coulomb wave equation

[— a +M+2£—2Ejl¢(r)=0 3.7)
-

S

dr’ r
gives, by comrespondence, the following map between the paramelers of the two problems:

Z—)Z&E—)%J’—){_}T_l (3.8)

The top (bottom) choice of the # map corresponds to posilive (negative} values of x,
respectively. It should be noted that the map produced by the comparison of Eq. (3.6) to
Eq. (3.7) is u “correspondence” map betwcen the parameters of the two problems and not
an cquality of the parameters. That is we obtain. for example, the correspondence map
# — ¥ but nol the equality = y. In fact, ¥is not an integer while, of course, { is. Using
the parameter map in (3.8) and the well-known nonrelalivistic energy spectium, E - =

~Z7[2(t+n+1)" . we obtain the following relativistic spectrum for x>0

S- kL
€=.E‘;;":i[l+[ AL ]] : n=0,12... (3.9)

n+y+l

For x'<0, the cnergy spectrum is oblained with + — —y—1. That is, £=¢7"" It is
:}//,l( =
J1-(AZ/x)" for x=-1,-2.... The highest negative energy. on the other hand, is £ =

—I&‘J"“'" =—y/x tor x=—1.-2.... These two correspond 10 non-degenerate states, while all

worlhwhile noting that the lowest positive cnergy eigenvalue is .E;:‘.E‘,;'V"

others do not. That is because €V| ’:E_F " , for n=0.1.2.... and for all x: The upper
it I

atl
radial component of the spinor wavefunction is ohtained using the same parameter map
. L - . . I R
(3.8) in the nonrelativistic wavefunction @ (ry~ (A ) e ™72 (A r), where A, =
2|Z|/{(n+(+1) and L (x} is the gencralized Laguerre polynomial | 15]:

‘ A (wlr) e Wy , k>0
Q.-{f)zl (3.10)

AT @ e @ TRLT Ny k<0

e P P _ ) - o . ; arlintl)
where @’ _‘ZSJI,‘/(;1+}/+I) and A7 is the normalization constant "—_]"{n+2}’+3)' The

lower spinor component is obtained by substituling this in Eq. (3.3) which, in this case.
reads
Z /|
| (__+Z+_‘_)¢,-{,-) (3.1
e+yix\ K r dr

where € #—y/x. Using the following recursion relations and dilTerential formula satisfied

g (r)=

by the Laguerre polynomials [15].

<L =(n4+v)L" = (n+ DL (3.124)
L=L"-L) (3.12b)
Sl 4 AL + (DL = XL -2 (3.12¢)
.r—d—L: =nl —(n+v)L | (3.12d)

dx
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we obtain
-7 -er r,. 274 ! "
_ % —“j}ﬂ{{i‘ Al (@ rY e [(u+”y+l)l r)+ $+7£lla'x (n+ l)].m(a’:’)] . A>0
QJ (r) :_2- W' =22/K PR ST TRl I P r @, LK oy r
“Wﬂu ((U,, r)’e Lu |((Uu r)+ o =2l L” (@, r):| » k<0

The spinor wavefunction associated with the lowest positive energy state 1s obtained {rom
above, for x <0, as

ya - j
Wolr)= [f; J: r“(ff;)(z Zr/x-)‘?’e‘”’"[ J o
4]

-AZ[y
where, for hound states, Z 1s negative. Obtainiug the lower component of the spinor
wavefunction associated wilh the highest negative energy state is more subtle. This is due
to the fact that the “Kinctic halance” relation (3.11) does uot hold for this state (and only
this state) since € =— y/x". One has 10 redo the manipulations of Eq. (3.11) by considering
carcfully the limit €, — — 7/« and for n=0.

B. Dirac superpotentials

In this case V(r) = 0 and one does need 10 transform the radial Dirac equation (2.11)
to obtain Schridinger-like equations for the spinor components. In other words, the
transformation parameter &= 0 which corresponds to the identily transformation. The wave
equations for the two radial spinor components obtained from (2.11) read as follows

I° Kkl . -1 ..
__,(—1+K( - )+2vr(r)_ - 9 (r)—_-() (3]4)
dr- r- A
2
familiar in the Janguage of supersymmetric quantum mechanics

d dUY €1 .
{—_“ (U * dr] Y }é (r)=0 (3.15)

where V. =l(W dW)+ x ¥ This equation could be wrillen in a form which is more

dr

where U =W+ x/r and U° +U” are (wo snperpartner potentials sharing the same cnergy
spectrum {i.e., they are “isospectral™) except for the lowest positive energy siate and the
highest negalive encrgy state, where £ =1, respectively. These two slales belong only 1o
[/ =" |2]. Examples of problems that are associaled with this case include the Dirac-
Oscillator, where W ~ r. Dirac-Scarl, Dirac-Péschl-Teller, and the Dirac-Rosen-Morse
polentials. As an illustration, we consider the Dirac-Oscillator problem where W(r) = arr,
and ar1s the oscillator frequeney. This problem was formulated and solved by Moshinsky
and Szczepaniak in their attempt to add to the Dirac equation a potential that is linear in the
coordinate in an analogy to the kinetic energy which is lincar in the mornentum [7]. Eq.
(3.14) with W(r)y=w’r gives

{ (f_1+M+(UI +m(”x+l)—%}é( ry=0 (3.16)

dre r-
We compare this equation with that for the nonrelativistic three dimensional isotropic
oscillator:
I* 1+
[—‘—,Jr—,—) —25}9(” 0 (3.17)

dre I
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The comparison gives the following two maps between the relativistic and nonrclativistic
problems:

for ¢*: @ = 0.E > 21,' @ (k)0 —{_ ¥ (3.182)
for ¢7: 0> 0. 5§ - (ke 5 {1 (3.18b)

Again, the top (bottom) choice of the £ map corresponds to positive (negative) values of &
respectively. Using these paramcter maps and the well-known nonrelativistic energy
spectrumn, £ = @ (2n+f+3/2). we oblain the following relativistic spectrum

_ i\/l+4}k:(z)l(n+x'+‘/2) . k>0
' 1+ 48 @' n , k<0

The lowest/highest positive/negalive energy state, where & =21, respectively. occurs for

n=>01.2... (3.19)

™

K< 0. I 1s associated with the spinor wavefunction y =| % . The radial components of
tl p
Al

the wavefnnction are obtaincd using the same parameter maps (3.18) and the non-

L
&g

relativistic wavefunction @ ()~ {@r) e L™ (@'r) giving forn=0,1.2

Aol " w'r’
s r)], x>0 (3.204)

"( ) ( )n'(,—ru?r‘..-'f_’ " L

W [ B: 1: z((l)_r_)

A! +J—\I lL N ((U F ) .
R K< U’ {-‘2{"1)

)= () e
W( (B - l([)}{ "*2((1)_’_)

where AY and B) are normalization constant. They are related by the kinetic balance

. afr -_— ) r
rclation, ¢ = = 211 (a) Tt + )aﬁ which gives
L 2k “11 A -
B = i (n+x+12)A (3.2hH)

The spinor wavetunction associated with lowest/highest positive/negative energy state,

where £ =1 and k< 0.is yir)= A" (wr)" ¢ o (lll)'

C. The Dirac-Hulthén problem

The Hulthén potential is of considerable significance to various applications in many
areas of physics. This includes applicalions in nuclear and particle physics, alomic physics.,
condensed malter, and chemical physics. The Dirac equation with this potential was solved
for s-wave (/1 =0} by Guo er af. [12], using the same approach presented above. In this
case V(r)= —A/(e”” —1). where @ is the screening range ol the potential. A and @ are rcal
and positivc‘ Equation (3.4) for the upper spinor components gives

p{ P+ (u) -2€A €

d.": mr ]) (){Uf _ 1

. ]6‘) {(r=0 (3.22)

where p =11 - (XA/7) and 7=—A/& . If we choose (he translormation parameter & such
that p=-@ then we obtain the solution found by Guo ef al. in [12]. Nonetheless, we
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Qg L)

consider here the solutton of an s-wave “gencralized Dirac-Hulthén™ problem where g is
arbitrary and the polential consists of the sum of (wo terms: the Hulthén potential and its

=tk
(J

square. Taking x=1-2 maps real space into a bounded one. That is, re[0,e] —

Xe [—I.+l]. An L~ function that is compatible with the domain of the wave operator and

satisfies the boundary conditions in this configuration space could be written as
o (ry=a (l+0"(1-x) P (x) (3.23)

where the real parameters @, F>0 and z,v>-1. P*"(x) is the Jacobi polynomial and

A 2+ gt +V 1 Uin+ DT (n+ g 4v+1)
i+ T+ i+ (n4v+1)

¢, is the normalization constant \X . Using the differential

equation, differential formulas ol the Jacobi polynomial [15], and {;—rz ax| —_r)% we can

wrile

A _ 'l—;( V-1t u—‘_ﬂ der—yr— , j

T+x | (R4 41y | - "ﬁ‘ Tr—v—l ) &
+ —+(r((r l)l+ ]0 M aryreer v el P N

(3.24)

To eliminate the otf-diagonal representation (the @, term) we should take g =28 and

v =2a —|. Conscquently, we ohtain

{—L+(ola(a—l)[::1) — @ | n(n+2a+ )+ ax( p+l)|l“+’”f}9 ) (3.25)

dr: [l

Comparing this with Eq. (3.22) gives the following parameter assignment

u , i, =< (3.26)
-, 7<0 A r=<0

1+¢ 120 AT r20
o= =
- S i eyl w2 a .
where {=p/o and A7 =={(n+)+(n+{) (5 +2cAlw ) The energy spectrum s
oblained as the (wo real solutions. £, of the following quadratic (in £) parameler relation

which also results form the comparison of the two equations

(A2 17 =020 (3.27)

(IR KY

tro >0 and n is the maximum integer i that yicelds real solutions for Eq. (3.27). The

[IIHKY

lowest positive energy cigenvilue is £, . while the highest negative energy in the

spectrum is £, . Furthermore. it is casy to verily that for 7 =0 and when 7<0 Eq. (3.27)
'
gives £ =+ p/r. The Tour energy bounds {.E “ an | } carrespond Lo non-degenerate
- et | gy
states, while all others do not. This Is because £ | =£ _|| ter n=0,12.....n, -1 and
! sl

for all £ Figure | shows the relativistc energy spectrum [or a given set ol physical
parameters and for several values of the dimensionless parameter &
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'F—'—z r | T
A * |
| ¢ I e
- L »
=0 | :
{ .
g, Of————+ b - .
g=s [
‘ ° | r
b e
1 | ]
! L ] L )
-1 « 8 ° |
0 2 4 6 8 10
n

Fie. I: The relativistic energy spectrum ot the s-wave “generalized Dirac-Hulthén”
prohlem Tor several values ol the dimensionless parameter &0 The other physical
parameters are Laken (in arbitrary units) as A=2.5.@w=1.0.A =0.2. The uraph

also shows that in this example 2. =6.7.9 for { =5,-4,0, respectively.

[1IHES

Now, the upper radial spinor component is obtained by substituling the parameters of
(3.26) and (3.27) into the wavelunction (3.23) giving
. “E"-I 24‘:_. ()—m/.‘._,r..-'_’( | — e ™ }J-—I P”I A‘{;,,..’J#Ir(l — e @ ) 20
¢ (ry= : .
ad - 2,4.‘ L, h {l —mr)—.: R:) 20 I\“_ze—wa) . T(O

i

(3.28)

The lower componenlt of the spinor wavefunction is obtained by substituting this in Eq.
{3.3) which, tn the x-coordinate, reads as follows

io | A
. [—+§(1 )+(l— r)—}é {r) (3.29)
E+pit| o X

¢ (r)=

where £ 2— p/r . Using the following recursion relations and differential formula salisfied
by the Jacobi polynomials [15],

l+x Y pradr _ _ N+V 1=l H+l R .
(T) o= T+ +] k NPT e (3.30a)
i Ji+‘£¢‘+l’+lp Cie b+ L [FTRE
L T 2ntpAv+l T 2n+ v+l (3.30b)
2 d vit vy i g I N a+v) g
(1- ]Zﬁ ——n(.x+—‘_”+y+v]ﬂ 2 P (3.30¢)

we obtain the following expressions for the lower spinor component when 720

l(ﬂ{ ‘1:-.| (U’{.-...N'f"r: , . “[; -r/‘lfm) =
Qq{ ] +:.7f'?' AR (l—( ) [(m+l)(!l+25 +|)X
2y (3.31a)
[ ~mr - +Aftew a0 o
A‘)u ](I )+(W—])(”+I)PHI (]—-—2( )i|

while for <0, the result is
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@, (r)=

E’fl:+)ojlllr

_.(]_E—mr)—l|:(2§'+])PJ:&T;_—Z: “(l_zf' wr)-l—(”—zé'_l)P[’i-u:-

Using the Jacobi polynomial identity £'“*'(-1)=(-)"

- B s = ey (e AT 2 - Afrw) P - 20y

el

n+l

I(nH+])
Tin+DT (v+l)

(3.31b)

- ll(l _ 2(}—(.’” }:I}

one can venfy that the

term inside square hrackets in (3.31h) vanishes at r = (. Moreover, one can also show that

l\im[vﬂ‘"""(—u S)—(n+v)P* (=14 5)]
a0

Therefore, the term with the (1-e¢

square integrability of @, (7).

—(ur)—]

_ (=T e+ +1)
TOATmT{v+2)

(n+u)y 5+0(85)

(3.32)

factor in (3.31b} is finitc at r = 0 maintaining

Table 1: A list of all relativislie problems thal bave been solved up 1o date by the approach p‘rcscnled in
this paper. For esch problem the Table lists the even and odd potential components, the transformation

parameter in terms of the polential parameters. and any relation among the paramelers.

Paramcters
Vir) Wir) ¢ Relation
Dirac-Coulomh Zlr 0 Zlk K=y +RZ°
Dirac-Oscillator 0 arr 0
Dirac-Morse —Ae™ —re " —K/r Alt =@+ A
Dirac-Roscn- A tanh(ar) 7 tanh(ear)—«/r Al =@ v A
Maoarsc |
Dirac-Eckart Acoth(wr) Tcoth(mr) — kfr Al T =@ + XA
Dirac-Rosen- 0 Acoth(wr)— Besch(awr)—x1 0
Morsc 1
Dirac-Scarf 0 Atanh(ewr) + Bsech(wry—x/ 0
Dirac-Poschl- 0 Atanh{ewr) + Beoth(awr) — x/1 0
Teller
—A T l * 1,1
Dirac-Woaods- — —— K/ Al e+ KA
Saxon L+e [+e
. - _A T 2 2 I
Dirac-Hulthén —x/r —Alr =@+ NA
{){Uf _] (,(UF _

Table 1 lists all relativistic problcms that have heen solved by this approach up o
dutc. For cach problem the table lists the even and odd polential components, the
transformation paramcter in terms of the potential parameters, and any relation among the
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parameters. A comprehensive list ol all potential classes and the “extended point canonical
transformations™ that map all potentials in a given class into one another are given in Ref.
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