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ABSTRACT. We have developed a numerical method to estimate the
depth of a buried structure from second moving average residual
anomalies obtained from magnetic data using filters of successive
graticule spacings. The problem of depth determination has been
transformed into the problem of finding a solution to a nonlinear
equation of the form z = f(z). Formulas have been derived for a dike,
horizontal cylinder, geologic contact, and a sphere. The method in-
volves using simple models convolved with the same second moving
average filters as applied to the observed magnetic data. As a result,
our method can be applied not only to residuals but also to observed
magnetic data. The method is applied to synthetic data with and with-
out random errors. The validity of the method is tested in detail on a
field example from Canada. In all cases examined, the depth obtained
gives satisfied results with actual depth.

Introduction

Simple geometrical shaped models can be very useful in quantitative inter-
pretation of magnetic data acquired in a small area over the buried structure.
The models may not be geologically realistic, but useful approximate equiv-
alence is sufficient to determine whether the form and magnitude of calculated
magnetic effects are close enough to the observed magnetic data to make the
geological postulate reasonable. However, very often the existence of inter-
fering sources is a problem to use of quantitative methods of evaluation such as
those given by Werner (1953), Gay (1963, 1965), Grant and West (1965), Hart-
man et al. (1971), Rao et al. (1973), Jain (1976), Stanley (1977), Atchuta Rao
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and Ram Babu (1980), Mohan et al. (1982), Thompson (1982), Prakasa Rao et
al. (1986), Prakasa and Subrahmanyan (1988) and many others. It is, in circum-
stance such as these, that the interpretation of magnetic data must involve initial
steps to remove unwanted field components in order to isolate the desired anom-
aly (e.g. regional-residual separation). The initial filtering operation include, for
example, least-squares filtering techniques (Abdelrahman et al. 1985), Fourier
transform methods (Syberg, 1972), regional susceptibility modeling methods (Li
and Oldenberg, 1998), and two-coaxial structures analysis method (Abdelrah-
man et al. 2002). The derived local magnetic anomaly is then geologically inter-
preted to estimate the depth, often without properly accounting for uncertainties
introduced by the filtering process. When filters are applied to observed data,
they distort the shape and extension of the magnetic anomalies. Thus filtering
magnetic anomalies generally yield unreliable geological interpretation.

On the other hand, few methods have been developed to determine the actual
depth to a buried structure from filtered magnetic anomalies. These methods in-
clude, for example, the use of correlation factors between successive least-
squares residual magnetic anomalies (Abdelrahman, 1990), the use of a
parametric relationship (Abdelrahman and Hassanein, 2000) and higher de-
rivative analysis techniques (Abdelrahman and Abo-Ezz, 2001). However,
effective quantitative interpretations using a numerical method based on the
analytical expression of second moving average residual magnetic anomalies
are yet to be developed.

The aim of the present paper is to introduce an interpretive technique based
on using simple models convolved with same second moving average filter as
applied to the measured magnetic data. Formulas are derived for a dike, hor-
izontal cylinder, geologic contact, and a sphere. The validity of the method is
tested on synthetic data with and without random error and also on a field
example from Canada.

Formulation of  the  Problem

The magnetic anomaly expression produced by most geologic structures with
center located at xi = 0 can be represented by the following function (Abdelrah-
man and Hassanein, 2000)

H(xi, z, θ) = KW(xi, z, θ),  i = 1, 2, ... N, (1)

where
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Table 2. Characteristic magnetization intensity K and magnetization inclination θ in Vertical
(∆V), Horizontal (∆H) and Total (∆T) magnetic anomalies due to thin dikes and hor-
izontal cylinders (after Gay, 1963, 1965).

Thin dikes Horizontal cylinders

Anomaly Magnetization Magnetization Magnetization Magnetization
(H) intensity inclination intenity inclination

(K)  (θ) (K)  (θ)

∆V 2 k t H'
o / z I'

o � d 2 k H'
o S / z2 I'

o � 90º

∆H 2 k t  H'
o sin α / z  I'

o � d � 90º 2 k  H'
o S / z2 sin  α I'

o � 180º

∆H 2 I'
o � d � 90º 2 I'

o � 180º

where z is the depth, K is the magnetization intensity, θ is the magnetization in-
clination in the vertical plane perpendicular to the strike of the structure and x is
a horizontal position coordinates, and the numerical values of a, b, c, p, r, n, m,
and q are defined in Table 1. Parameters K and θ define the components of the
magnetic anomaly being measured (Gay, 1963 and 1965; Prakasa Rao et al.,
1986; and Prakasa Rao and Subrahmanyan, 1988). Examples of K and θ for the
vertical (∆V), horizontal (∆H) and total-field (∆T) anomalies for the case of thin
dikes and horizontal cylinders are given in Table 2. In this Table, k is the mag-
netic susceptibility contrast, Io is the true inclination of the geomagnetic field,
H'o and I'o are, respectively, the effective intensity and effective inclination of
the geomagnetic field in the vertical plane normal to the strike of the body, t and
d are, respectively, the thickness and the dip of the dike, S is the cross-sectional
area of the horizontal cylinder, and α is the azimuth of the body measured in the
clockwise direction from the magnetic north.

TABLE 1. Definition of a, b, c, m, n, p, r, and q values shown in equation (1). F.H.D. and S.H.D.
are the first and the second horizontal derivatives of the magnetic anomaly respectively
(after Abdelrahman and Hassanein, 2000).

Model Magnetization a b c m n p r q

Sphere Vertical 2 �1  �3  1 0 1 1 2.5

Sphere Horizontal �1  2 �3  0 1 1 1 2.5

Horizontal cylinder
Dike (F.H.D.) Total, vertical, 1 �1  2 0 1 1 1 2  

Geologic contact horizontal
(S.H.D.)

Dike Total, vertical, 1 0 1 0 1 0 0.5  1  
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The first moving average (grid) method is an important and very simple tech-
nique for separation of potential field data into residual and regional com-
ponents (Abdelrahman and El-Araby, 1993). The basic theory of the first
moving average is described by Griffin (1949) and the application of least-
squares is described by Agocs (1951). However, the use of second moving aver-
age method for separation of magnetic anomalies into residual and regional
components is yet to be developed. 

Consider five observation points xi � 2s, xi � s, xi, xi + s, xi + 2s, on the
anomaly profile where s = 1, 2, 3, ... , M spacing units and is called graticule
spacing or window length. The first moving average regional magnetic anomaly
Z1(xi, z, θ, s) is defined as the average of H(xi+s, z, θ) and H(xi � s, z, θ)

The first moving average residual magnetic anomaly R1(xi, z, q, s) is defined
as H(xi, z, θ) � Z1(xi, z, θ, s) or

The second moving average regional magnetic anomaly Z2(xi, z, θ, s) is
defined as the average of R1(xi+ s, z, θ, s) and R1(xi � s, z, θ, s)

The second moving average residual magnetic anomaly R2 (xi, z, θ, s) is
defined as R1(xi, z, θ, s) � Z2(xi, z, θ, s)

Equation (5) gives the following values at xi = 0, xi = s, and xi = � s, re-
spectively,
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and

where

Using equations (6), (7) and (8), we obtain the following nonlinear equation
in depth (z)

where 

Equation (9) can be solved for z using the simple iteration method described
by Demidovich and Maron (1973). 

Knowing the depth (z), the magnetization inclination θ can be determined
from equations (7) and (8)
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where

Since z, θ, s, and R2(0) are known, the magnetization intensity K can be de-
termined from equation (6)

At this stage, we have assumed knowledge of the origin (xi = 0). In practice, a
field traverse will have an arbitrary origin, in which case the position of the
structure (xi = 0) in equation (1) must be first determined. In most cases, the
main maximum value of the profile and the main minimum value of the profile
can be used to obtain the correct location xi = 0. A straight line joining the max-
imum to the minimum of the profile will intersect the anomaly curve at the cor-
rect location xi = 0 (Stanley, 1977). The method is independent of base line
determination because the magnetic data processing, equation (5), removes this
effect.    

Theoretical Examples

We computed three different composite magnetic fields, each consisting of
the combined effect of a local structure (dike, horizontal cylinder, and sphere),
and added a regional polynomial component. The model equations representing
the model [equation (1)] and the regional anomalies are:
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and

It should be noted that the regional polynomial components in the above
model equations are chosen arbitrary. The three composite magnetic anomalies
are shown in Figure 1. In Figure 1, each composite anomaly H(xi) is con-
taminated with 10% random error. Each noisy composite magnetic anomaly H
(xi) was subjected to our new second moving average technique. Seven suc-
cessive second moving average graticule spacings (s = 2, 3, ... , 8 km) were ap-
plied to each set of input data using the following formula:

 (13)
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FIG. 1. Composite magnetic anomaly of (a) H1 of a buried dike and first-order regional as ob-
tained from equation (12), (b) H2 from equation (13), and (c) H3 from equation (14).

Fig. 1a
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Fig. 1b

Fig. 1c
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The second moving average residual magnetic anomalies thus obtained are
shown in Figure 2. Each of the second moving average profiles was analyzed
based on equations (9), (10), and (11). For each graticule spacing, the depth,
magnetization inclination, and magnetization intensity values were determined.
The results including the average values are given in Table 3. 

  
R x

H x H x s H x s H x s H x s
i

i i i i i
2

6 4 4 2 2
4

( )
( ) ( ) ( ) ( ) ( )

.= − − − + + − + +
 (15)

Fig. 2a

FIG. 2. Second moving average residual magnetic anomalies for s = 2, 3, ... , 8 km as obtained
from magnetic anomalies (a) H1, (b) H2, and (c) H3.
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Fig. 2b

Fig. 2c
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We verified numerically that the average values of the model parameters ob-
tained by our method are in very good agreement with the actual model
parameters given in equations (12), (13), and (14), and shown in Figure 1. The
method works well even when the buried structure is located at shallow or deep
depth with low or high magnetization inclination. Good results are obtained by
using the present algorithm, particularly for depth estimation, which is a pri-
mary concern in magnetic prospecting and other geophysical work. The method
is independent of the regional anomaly.

For synthetic data, we also verified that only a few points around H(0) are
needed to obtain the exact values of z, θ, and K. However, the data with error
required more points around H(0).

Field Example

Figure 3 shows a total magnetic anomaly above an olivine diabase dike, Pi-
shabo Lake, Ontario (McGrath and Hood, 1970). The depth to the outcropping
dike (sensor height) is 304 m (Figure 3). The anomaly profile was digitized at
an interval of 25 m. The magnetic data were subjected to a separation technique
using the second moving average method. Filters were applied for 10 successive
graticule spacings (s = 100, 125, ... 325 m) (Figure 4). The method, equations
(9), (10), and (11) were applied to each of the 10 second moving average re-
sidual profiles to determine the model parameters assuming a dike target. The
results are given in Table 4. The average model parameters are: z = 303 m, θ =
37 degrees, and K=1072 nT. The depth obtained by the present method is in
very good agreement with the actual depth (304 m). 

Conclusion

The depth determination problem, assuming a simple buried structure, using
second moving average residual magnetic anomalies has been transformed into
the problem of finding a solution of a nonlinear equation of the form z = f(z).
Our method involves using simple models convolved with the same second
moving average filter as applied to the observed data. As a result, our method
can be applied not only to �true residual� but also to measured magnetic anom-
aly profiles. Synthetic and field studies demonstrate the efficiency of the present
inversion technique where highly distorted residuals (Figures 2 and 4) yield re-
liable depth estimates.
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FIG. 3. Total magnetic anomaly over an outcropping olivine diabase dike, Pishabo Lake, Ontario,
Canada (McGrath and Hood, 1970).

FIG. 4. Second moving average residual magnetic anomalies over an outcropping diabase dike,
Pishabo Lake, Ontario, Canada for s = 100, 125, ...., and 325 m.
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TABLE 4. Interpreted model parameters as computed from second moving average residual mag-
netic anomalies of olivine diabase like, Pishabo Lake, Ontario, Canada, using the
present method.

s z θ K
(m) (m) (deg.) (nT)

100 315.56 52.04 1572.18

125 301.19 47.69 1180.86

150 300.50 41.18 1077.59

175 300.84 36.52 1021.73

200 309.41 33.06 1058.12

225 302.06 31.82   963.44

250 299.22 31.06   929.22

275 294.89 31.71   909.09

300 296.61 32.74   940.04

325 311.89 34.11 1068.04

Average values 303.2 + 6.78 37.2 + 7.37 1072.1 + 194.6
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