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ABSTRACT.  In the absence of external modes, cavity dimensions and
dipole location are the main factors that increase, reduce and disallow
dipole decay rate in the Cavity QED. The presence of external modes
with short cavity length, high atom velocity and high intensity is con-
sidered as a reasonable source of constrain to the dipole vector in a
fixed direction. As a result, only two orthogonal directions can be as-
sumed: π polarization and σ polarization. These directions can be used
to illustrate the variations of Cavity QED effects with dipole adjust-
ment. Thus the distribution of the dipole decay rate across the plates
separation is independent of the excited cavity mode. In contrast, dur-
ing the passage of a slow atom between the plates, the dipole can ad-
just itself along a local electric field direction. In this work, it has
been proven that the average dipole adjustment is determined at every
point parallel to the direction of the electric mode vector of the excit-
ed cavity mode. Also the subordination was shown to lead to observ-
able changes in the dipole decay rate. The above cases have been
explored for situations involving sodium atoms between conducting
plates of the sub-wavelength range.

1. Introduction

Modern studies on the subject of cavity quantum electrodynamics (CQED),
namely those concerned with the influence of field confinement in micro-
cavities on the properties of quantum systems, have been encompassed in pla-
nar[1-5] and cylindrical structures[6-10]. These studies have enumerated the
modes and used them to evaluate the basic process of dipole decay rate dis-
tribution, within a normal cross section, between two parallel plates or within a
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normal cross-section of a cylinder. The outcome of these studies shows that the
electric dipole moment vector of the atom is polarized in the π or σ direction.
This appears to follow the traditional pattern in works in which cavity in-
fluences were investigated near a  half-space[11] or between two parallel plates[1-5].

The CQED effects inside planar and cylindrical structures have more current-
ly ordered a specific significance where the stress begins to move to the motion
of atoms in hollow structures[12-15]. Such structures act as guides to both atoms
and electromagnetic radiation, with the main interest being the control of atomic
motion in the structure.

For a short cavity length, high atom velocity and high intensity, it is rea-
sonable to follow traditional patterns when considering that the electric dipole
vector is constrained to remain in either π or σ polarization. However, slow
atom transit time can indeed be longer than a typical relaxation time. In which
case, the electric dipole moment vector is forced by the cavity mode to lie along
the electric mode vector at the instant position of the dipole. An adiabatic repre-
sentation emerges in which the electric dipole of a moving atom continually ad-
justs its direction along the electric mode vector of the excited cavity mode. Its
instant features are consistent with the dipole adjustment at that point. By sup-
plying a picture of the orienting of the dipole adjustment, it can be seen that,
this dynamic mode-dipole adjustment controls the whole CQED effect that aris-
es in the absence or presence of the cavity mode.

The primary aim of this article is to investigate the effects of mode-dipole
adjustment pictures on the above quantum process between two perfect con-
ducting parallel plate structures. This system acts to totally confine all fields in-
troduced into the vacuum region. Because of its relative simplicity as a con-
fining structure, it has a distinguished history as a testing ground for the
confinement effects in quantum electrodynamics. CQED between conducting
plates have already been discussed[1-5] and the atomic motion within it for the
high-speed atom case has been examined[16]. However, it appears that the ef-
fects of atomic motion on a dipole decay rate in such a fundamental system
have not as yet been investigated.

In this article, two different physical situations of the dipole adjustment are
considered; firstly when the distribution of the dipole decay rate between the
plates is independent of the excited cavity mode. And secondly when the excit-
ed cavity mode influences the distribution of dipole adjustment, which changes
the dipole decay rate. The former will be referred to as the traditional pattern,
and latter as the new pattern. In section 2 expansions of the dipole decay rate in
the absence of a cavity mode, following the traditional pattern, in terms of Γπ
for a dipole fixed parallel to the system axis, and Γσ  for a dipole fixed per-
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pendicularly to it will be demonstrated. The effects of the presence of a cavity
mode on the dipole decay rate are considered in section 3. Section 4 contains
conclusions and further comments.

2. Dipole Decay Rate in the Traditional Pattern

Electromagnetic modes supported by a pair of perfectly conducting, plane-
parallel and infinite metallic systems are known[17]. The electric dipole located
within such a structure can only couple to a set of discrete modes (or allowed
modes) with cut-off frequencies for a given longitudinal wave-vector k|| de-
pending on the cavity dimensions. For such a structure system of separation
plates L, the dispersion relation of the modes can be written as

The electromagnetic modes can be quantised straightforwardly and the quan-
tisation procedure for this system is adequately described in Ref.[16].

In the absence of any external mode, the atom interacts with the vacuum
modes constrained by the structure, leading to two types of physical influence.
Firstly, the dipole decay rate of the atom is modified, hence becoming position-
dependent. Secondly, the atom experiences energy shifts to both levels[18-20].
The modification of the dipole decay rate for an electric dipole moment µ situ-
ated at an arbitrary point r = (r||, Z) between conducting plates is evaluated by
Hinds[1]. The π polarization case is

And the σ polarization case

where Γ0 is the corresponding spontaneous rate in free space

λ = 2πc/ω0 is the free space wavelength of the dipole transition and the maxi-
mum nmax that can be allowed for a given separation is determined by the dis-
persion relation as follow
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where Int( ) stands for the integer part of the bracketed quantity.

Focus is on the two conceivable cases of separate adjustment by assuming
that the electric dipole is oriented in an unchanging direction: π polarization or
σ polarization for typical cases involving sodium atoms between a pair of per-
fectly conducting, plane-parallel and infinite metallic system of L = 500 nm and
focuses on its 32 s1/2 ↔ 32 p3/2 transition (λ = 589 nm). The magnitude of the
dipole matrix element associated with this transition is about 〈d 〉  = 2.6 eaB,
which is consistent with the measured free space lifetime of t ≈ 16.3 ns (or Γ0 =
6.13 × 107 s �1).

Figs. 1 and 2 show the variation of the dipole decay rate across the plates
when the dipole is adjusted in π polarization, the dipole decay rate is zero if the
dipole is very close to the plate, as shown in Fig. 1. However, when the dipole
is adjusted in σ polarization, it has twice the free space value, as shown in Fig.
2. It is worth noting that, firstly, because of the L = 500 nm selected for instance
objective in the previous two figures the dipole decay rate distributions arise
from at most just two modes. Secondly, the contribution of each mode to the de-
cay rate depends on the position of the atom in the spatial distribution of the
field in that mode.

3. Dipole Decay Rate in the New Pattern

So far the assumption has been made that the electric dipole adjustment does
not change in the course of atom motion. This is quite reasonable provided that
the electric dipole vector is constrained to remain in a fixed direction by some
external means, or that the time of flight through the length of the cavity is too
short for the direction of the dipole vector to adjust to the local mode sur-
roundings.

The case in which the individual electric dipoles respond to the structure
mode by oscillating along the direction of the local mode will now be discussed.
This physically reasonable �mode-dipole adjustment picture� has significant re-
sults and observable changes in the dipole decay rate. Assuming that the TM1
mode is excited, it is not difficult to derive the local angle of adjustment for the
electric mode vector at all locations within a normal cross section and this local
angle defines the adjustment of the electric dipole and, so, controls local decay
rate.

In the view of Ref.[16], the quantization electric field function of a TM1 mode
is given by
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FIG. 1. Distribution plots for the dipole decay rate for an atom between a pair of perfectly con-
ducting, parallel plates system. This plot shows the variations Γπ/Γ0 with the position of
the atom within the plates separation.

FIG. 2. Distribution plots for the dipole decay rate for an atom between a pair of perfectly con-
ducting, parallel plates system. This plot shows the variations Γσ/Γ0 with the position of
the atom within the plates separation.



S. Al-Awfi90

where V is quantization volume. The dipole decay rate in the presence of the
TM1 mode must then be expressed as a linear combination of Γπ  and Γσ as de-
termined by the local dipole adjustment

Γ(Z) = Γπ  sin2 θ(Z) + Γσ  cos2 θ(Z) (7)

where θ(Z) is the local adjustment angle of the local electric field vector at the
point z

where E⊥ is the magnitude of the perpendicular component of the electric field
and E|| is the magnitude of the longitudinal component. Therefore, the local an-
gle can be written as 

The distribution of the angle θ(Z) across the normal cross section is shown in
Fig. 3. The schematic representation of Fig. 4 is presented to simplify and ease
the understanding of the local angle shown in Fig. 3. It is clear that for this
mode the angle of adjustment is 90º (in the π polarization case) at the center of
the cross section and regularly reduces across the plane to zero at the plates
(dipole adjusted in the σ polarization case).

In Fig. 5, the distribution for the local decay rate across the normal cross sec-
tion is plotted. Evaluations are carried out for points spanning the cross section
and are based on the expressions given in Eq. (7). As anticipated,  it is seen that
for this particular mode the local decay rate is equal to 2Γ0 at the plates which
agrees with the result shown in Fig. 2 for σ  polarization situated close to the
plate, while the local decay rate is equal to about 1.23Γ0 at the center of the cross
section which also agrees with the result found in Fig. 1 for π polarization.

These consequences come directly from the mode-dipole adjustment picture
that forces the dipole to remain in the σ polarization at the plate and in the π po-
larization at the center. This means that the mode-dipole adjustment picture pri-
marily governs the dipole decay rate of slow atoms. Therefore, the relevant
characteristics of this decay of any system depends not only on the position and
orientation of the dipole, but also on the average of the dynamic mode-dipole
adjustment due to a particular excited mode.
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FIG. 3. Distribution plots of adjustment angle θ(Z) of electric dipole which oscillates along the lo-
cal electric mode direction of an excited TM1 mode.

FIG. 4. Schematic representation of the dipole angles given in Fig. 3. At the center the dipole angle
is 90º and it continually decreases to zero at the plate.
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4. Comments and Conclusion

The main aim of this article is to study the role of an excited cavity mode in
determining the dipole decay rate of a single atom. The analysis was conducted
by studying the movement of this atom between a pair of perfectly conducting,
plane-parallel and infinite metallic systems when one of its permitted modes
was excited. For a very fast atom, the dipole decay rate can essentially be con-
sidered to be dependent only on a cavity dimension, the dipole location and the
dipole polarization but it is independent of an excited cavity mode.

On the other hand, for a slow atom, the time of flight within the length of the
system is in fact longer than a typical relaxation time. This means that the
dipole vector will have enough time to adjust a every point so as to be parallel
with the direction of the electric mode vector of the excited cavity mode. There-
fore, in addition to the position dependent, the dipole decay rate in cavity is in-
herently governed by an excited cavity mode. This dependence is called the
mode-dipole adjustment picture, which was investigated for a specific situation
of a sodium atom moving between a pair of conducting plates.

FIG. 5. Distribution plots for the dipole decay rate of adjustment angle θ(Z) of electric dipole
which oscillates along the local electric mode direction of an excited Cm1 mode for an
atom between a pair of perfectly conducting, parallel plates system.
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As a result of the mode-dipole adjustment picture, the dipole decay rate at any
given point between plates become identical to that of a dipole adjusted along
the direction of the electric mode vector at the given point. It should be em-
phasized that the role of the cavity mode in the dipole decay rate is only used to
determine an average direction of the electric dipole moment vector. This direc-
tion is along the direction of the electric mode vector of the excited cavity mode.

The dipole decay rate is a result of the emission and re-absorption only of the
cavity vacuum modes by the dipole where the moment vector is adjusted at the
given direction of the electric mode of the excited cavity mode at the point. The
mode has no other role to play in the dipole decay rate in the cavity. It is im-
portant to note that the dipole decay rate is a substantial ingredient of the radia-
tion forces responsible for channelling the atoms along the hollow region of any
structure when dipolar transition frequency is appropriately tuned to an excit-
able mode of the structure. Therefore, the mode-dipole adjustment picture, in
general, will control all CQED effects arising in the presence of the cavity mode
such as heating, cooling and trapping of atoms[21-25].

Finally, it is worth noting that the mode-dipole adjustment pictures and hence
the dipole decay rate distribution is dependent on the order of the mode, par-
ticularly for an excited p-polarized mode in a cylindrical system. Work along
these lines is in progress and the results will be reported in due course.
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