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ABSTRACT. A numerical algorithm is presented for finding a local optimum
of nonlinear programming problems that use quasi-Newton methods. The
algorithm uses the squared slack variable philosophy and an updated for-
mula with a numerically stable method for maintaining the positive definite-
ness at each iteration. A modification of the starting matrix of approxima-
tion of the Hessian by the BFGS formula is also given. Some numerical re-
sults are given to show the efficiency of the algorithm.

Introduction

In the last decade, a great deal of attention has been paid to extending Newton and
quasi-Newton methods for solving general constrained optimization problems. One
of the most promising approaches on this line is the method which iteratively solves
linearly constrained subproblems.

This method was originated by Wilsonl!]. Wilson’s algorithm consists of a sequence
of quadratic programming subproblems and converges locally with a quadratic rate.
However, his method requires second derivatives of both objective’ and constrained
functions.

Modified Wilson’s methods with quasi-Newton updates are studied by Garcia and
Mangasarian(?l and Hanl®l. They show that the methods have superlinear rates of
convergence. Powelll!] added further refinement and analysis.

Powelll®! studied the efficiency of BFGS during the calculation when applied to
quadratic functions and noticed also the behaviour in sequential quadratic program-
ming methods for constrained optimization whose step length do not exceed one.
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The extension of quasi-Newton method to solve inequality constrained problems
by converting them into equality constrained by the addition of squared slack vari-
able is well known but rarely used. Tapial® attempted to demonstrate that the
squared slack variable approach to inequality constraints need not suffer from the
standard criticisms attached to it: increased dimension, numerical instability and
presence of singularities. Specifically, it is these removable singularities that eventu-
ally leads to a pure active constraint approach.

In this paper we develop the algorithm proposed by Tapial®! to solve constrained
optimization problems.

The proposed algorithm applies quasi-Newton method and maintain positive defi-
niteness of the Hessian of the Lagrangian function and also for the other matrix
whose diagonal elements are augmented by a factor multiplied by the added squared
slack variable. The algorithm comprises two different “Techniques” for maintaining
the positive definiteness. The first uses a numerically stable method that is a modifi-
cation of the modified Cholesky factorizationl” given in Gill et al.l8l. The other
technique uses a safeguarded procedure with the BFGS formulal®).

In section II, the fundamental equations of the proposed algorithm and its basic
features are described. In section III, refinements of the algorithm is described from
computational point of view and some comments are given.

The Proposed Algorithm
The nonlinear programming problem to be considered in this paper is defined as
min f(x)
su)i)ject to
g(x)=0 , i=12,...,m 8]
g(x) <0 , i=m+1,...,p

where f, g:R"—>R
Squared Slack Variable Philosophy

If we introduced the slack variables y,,. 4, ... , yp and define F, ;: R™P™ _, R by
Tapial! E

F(x,y) = f(x)
g (xy) =g () , i=i..,m
— 1 )
&(X,Y)=&(X)+i)’%,l=m+ P
then we may consider the following equality constrained optimization problem

minimize F(x,y)
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subject to 4 (2)
g (xy)=0 ,i=12,...,p
The Lagrangian function associated with the problem (1) is given by
P
L(X,y,X) = f(x) - 'gl )\i gi (X’Y) (3)
The equationl6.19]
VX L (xt ’y‘ ’x*)
VL(x..y.A) = VyL(x..y.,\.) =0 )
VX L (X‘,y‘,h‘)

is the stationary point (KT) condition at x,,y, and A,

As usual a Taylor series for VL about x,y, and A, gives

ox,

Sy,
B\,

Neglecting higher order terms and setting the left hand side to zero by virtue of (4)
gives the iteration

dx,

dy, Yrohr) (6)
B\,

For simplicity we put V2L (x,,y;,\,) = V2L (.),
VZL (X¥eh) = VAL (1), Vr, s
and 8x = 3x,, 8y = 8y, and &\ = 8A,

Equation (6) gives
VL (VAL () VA () dx V.L (")
VAL () ViIL (1) V3L () By == 1 VL)
Vi OV OOV () )N ViL()

Formulae for V2L () and VL (-) are readily obtained from (3) giving the system

order n p-m - p
n G(x,\) 0 -A 3x V. f-AN
p-m, 0 —Ay Aoy oy =—  —Ayy )

p | -AT -AT 0 B\ -&(x.y)
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Aoy =[0A,]
and Ay = dlag (ym+l, Ym+2s - » Yp)
A)‘I = diag ()\mﬂ, Xm+2, cer gy )\p)

A is the Jacobian matrix of constraint normals evaluated at x,, that is

A= [V = [Vag )]s,

In fact it is more convenient to write

)\r+1=)\r+8)‘ ’ 8y=)'r+1_Yr ’ sx=xr+l_xr

and solve the system
G(Xp+1—%X) — ANy = = VI
- Axl Yre1— Ao,y ()\r+l - )‘r) =0

- AT (xr+1 - xr) - Az,y (yr+1 - y:) = g (X,Y)

Equation (8) gives
Xev1 = X — G'Vi+G! A)\r+1
Equation (9) gives
Yee1 = - (A)‘I)_l Ao,y ()‘r+1 - xr)
That is
[ Ay - A
ym+l ( = Ar
Ym+2
Yo . Aoy — A
r | x
From which we have
A - A ;
(YI+l)i = ( T \ §'+1)i , i=m + 1,

Y

T

or
A

1

A Yr
Equations (10) and (11) give

(= ey iom o,

ATG' ANy = ATG! V- AT (Yero1y) —E (x,y) =0

®)
®

(10)

(1)

(12
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Using (12), we have
ATGH AN, = TGV~ AT, |-ty | B =0
- (% Yoo
Let w = (0,0, 332, Y thatis a
E(xy)=g(x)tw
we have

Aot = (ATG? A=A YY) (AT G Vi-g (x) - W)
where
A =diag A\, A, LA
and Y2 =diag (0,0 ,...,¥2,,,¥2425 > Y2

Equation (10) gives
A 0
AT,y — X)) = - ()\il ¥, +g(x) + w,
T
rl’
| -
Then we have
(xl‘+1)‘- - [AT (xr+1 ~ xr) + g (xr) + wl'].
A y? 0
and i=m+1,..,p
AT (x . —x) + g(x) + w_ '
i = VAN [ Ve ”

where (U); denotes the i-th component of the vector U.

The method requires initial approximations x,,\,, and uses (13), (11) and (14) to
generate the iterative sequence {Xes¥ro M) '

As it is clear from these equations, the use of the squared slack variables does not
necessitate the increase of dimension of the problem except that, it just uses a new
vector y of (p — m) components.
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Equality Constrained Problem

If the problem to be considered is an equality constrained problem, thatis p = m,
then we have the following two fundamental equations.

)\r+1 = [AT (xr) Gt (xr’)‘r) A (Xr)]_1 [AT (X,) G (Xn)\r) Vi (X,) -8 (X,)] (15)

Xr+1 = X — G_l (xr’)‘r) \2¢ (Xr) + G—l (Xn}‘r) A (Xr) )‘r+1 (16)

The method requires initial approximations x,,\,, and uses (15) and (16) to generate
the iterative sequence {x,\.}.

The fomula (16) can be put in the form

Xrvp = X%t Zr

(17)
where
Z, = -G (x,\) VE(x,) + G (x,,A,) A (%) A, (18)

Let the Jacobian matrix A(x,), which is of order n x m, be partitioned to m column
vectors each of which has n elements, that is

A=[AA,..A,]andhence GTA=[G1A;G'A,...G1A,]
Letvi=G'A,j=1,...,m (19

which can be solved by Cholesky factorization. Let V be a matrix whose column vec-
tors are vy,v; ... Vp,, then ’

ATGTA=[ATv,ATy, ... ATy, ] = ATV
Let G = LTL, then we have
ATV=ATGTA=ATMLHT(LHA=(LTA)T(L'A)
that we retain a symmetrical form. Equations (15) and (16) give

Xi1 = xr_‘—/ + Vr )‘r+1

M= (AT (x) V) U, 2n

with
= G (x,\,) V£ (x,) (22)

and
U, = AT (x) ¥,~g (x,) (23)

We note that AT V(= ATG™ A) is positive definite as long as G is positive definite
(provided that the columns of A are linearly independent), and hence equation (21)
can also be solved by Cholesky factorization.
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From the fundamental equations (15)-(18), it is clear that if G(x,\) is positive de-
finite for all x € R", and x,,\, are sufficiently close to x,,\,, the sequence of approxi-
mations x;,\, converges to both the solution vector x, and the vector of optimum Lag-
range multipliers A [0,

The Approximation of The Hessian Matrix G(x,A)

For the proposed algorithm, the Hessian matrix G(x,\) is approximated by the
BFGS formula referred by Powell®] on account of its success in solving uncon-
strained minimization problems. The BFGS formula is given by

=B _BrZrZ}-BE 'Yr‘Y'}"
” r Z'B, Z, VAR

B (24)

where G(x,,\,) is replaced by B(x,,\,), that is, B,.
and Z, = X;41—X;,

also A, = V, L(X;+1,A) = Vi L(X,Ap)-

B, is selected to be the unit matrix I, of order n.

The formula (24) maintains positive definiteness if the condition ZT v, > Ois satis-
fied. However this is not always the case due to the negative curvature of the Lagran-
gian function.

The use of BFGS formula with ZI ~, > 0 should ensure in theory that all Hessian
(or inverse Hessian) approximation remain positive definite. However, in practice it
is not uncommon for rounding errors to cause the updated matrix to become singular
or indefinite. The use of Cholesky factorization allows one to avoid this serious prob-
lem: the loss (through rounding errors) of positive definiteness in the Hessian (or in-
verse Hessian) approximation.

In the following a numerically stable method for maintaining positive definiteness
and forming Z, in this case is presented. It is a modification of the modified Cholesky
factorization given in Gill and Murray!'!}, and Gill et al.[8l. The result is the follow-
ing(7k:

1—3, =B, + i1
where
w =20 if B, is safely positive definite

T, > 0 issufficiently large that B, is safely positive definite otherwise.

Clearly the smallest possible ., (When B, is not positive definite) is slightly larger
than the magnitude of the most negative eigen value of B,. Although this can be com-
puted without too much trouble, a much simpler algorithm is provided that may re-
sult in the larger p,.
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We first apply the Gill and Murray modified Cholesky factorization algorithm to
B,, which results in

B, +E, =L,LT,

L, is a lower triangular matrix and E, a diagonal matrix with nonnegative diagonal
elements that are zero if B, is safely positive definite. If E, = 0, p, = 0. fE, # 0, we
calculate an upper bound «; on ., using Gerschgorian circle theorem, as follows. The
matrix B is said to be strictly diagonally dominant if,

n
b; - 2 |bl >0
i=1
j#i
andifp,,p;, ,Pnare the eigenvalues of B, we have
n
min P; = min {b; - 3 |b}
1<isn I<i=n j=1
j#i
max p, < max {by + 3 |byl}
l<k=n 1<k=n j=1
j#k
We let
Q; = max {(pmax - pmin) 8”2 ~ Pmin » 0}
if ;= 0 the matrix B is positive definite

if a; > 0 a; I must be added to B so that B = B + q, L is strictly diagonally domin-
ant.

Since a, = max {Eg} = max {u}

1=<i=n I<i=n

is also an upper bound on p,, wet set p, = min {a;, a5} and conclude the algorithm by
calculating the Cholesky factorization of

§,=B,+ w L

In the classical Cholesky method, the decomposition B, = L, LT is performed in n
steps in each of which a column of L, is determined. The jth step Cholesky’s method
is then given by

B! .
Ly = (b5 - % L ly)/l,i=j+1, n

In the modification, the procedure acts directly to limit the size of the elements of
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L, when the matrix B, is not positive definite. It is clear from equation (25) that the
elements of the jth row of L,, 1;, k = 1,2, ..., j—1, are computed as part of the com-
putation of 1;. It is possible for 1; to be very small and hence from equation (26) for
1; to be large. If the 1; elements are considered too large, then can be reduced in
modulus by increasing the diagonal elements b;. The algorithm is identical to the
classical Cholesky method except that the elements I?j are modified so that they are
positive and that each of the resulting off-diagonal eiements is less than 8; in mod-
ulus. The parameters B;is the bound imposed on the elements 1;;in order that the fac-
torization has to be numerically stable.

Let 1;? be the modified 1. It can be written as

17 =max(3,[1],03/8%) (27)
where 3 is the machine precision and if l%j < § this corresponds to B, not being suffi-
ciently positive definite. 8; is assumed to be

i1
0] = m?x {lbll - 3 lik llk| i= o+ n}

That1501=max{|l,11”|1=]+1, ,

and 1] <8;,i=j+1,...,n
22 =by + - 2 1§ =15+

where

—_ 12 2
o= 1 - 1

If this equation for 152 is compared with (25), it is clear that the definition of the
off-diagonal elements given by (26) is identical to that which would have resulted if,
on applying Cholesky’s method, the diagonal elements of the matrix to be factorized
had been given by b; + p;. The factors obtained by the modified procedure are,
therefore, identical to those obtained by applying Cholesky’s method to the matrix
B, =B, +E.

The value of 8; can be determined from the result of the following theorem.
Theorem

Let B, be a symmetric matrix with bounded elements. The jth diagonal element p;
of the diagonal matrix E, associated with the modified Cholesky factorization of B, is
bounded and satisfies

0<p < L2<max{d,bo +G-1)82,m/B+(G-1)B} (29

where
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nj=max {}by|:i=j+1, ,n}
Proof
From (27) :Tjj =0;/8;,

and from the modified Cholesky factorization we have

j‘l T - -
lij=(bij— 2 ljklik)/ljj’1=]+11 , 1,

=1

so that |1 < B; , and
lll] Iul = Ibl]| + : =1+ n.

If8; =8, ,k=1,2 .(j-1), it follows that

i=j+1,..n

From (25) we have similarly:

15 =< [by + f[ B} < [by] + G -1) 87

Using these bounds with (27 and 28):

* .

The choice of (27) ensures positive-definiteness with 12, = 1 if 12 > 0 and suffi-
ciently large. To avoid modification as far as possible, and keep i small when mod-
ification is necessary, we need to choose B, as large as possible. Formula (25) for an
unmodified matrix implies that each

lfksbjj k=1,2,...,j—1_
and if
82 = max{|bj]:j=1,2,...,n}

we have ll?k < B? automatically and no modification will be necessary. The final
choice of B is

B’=max{d,y,m/n}

where <y and m are the largest in modulus of the diagonal and the off-diagonal ele-
ments of B, respectively. Condition (27) combined with the choice

B;=B=max{d,y,n/n}

will give a larger lower bound than 3.
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The algorithm for finding a positive definite matrix B, = B, + p, I can be stated as
follows:

1) If B has any negative diagonal elements or the absolute value of the largest off-
diagonal element of B is greater than the largest diagonal element of B, set
B =B + p, I, where ., > O is chosen so that the new diagonal is all positive, with the

ratio of its smallest to largest element = & and the ratio of its largest

element to the largest absolute off-diagonal is = 1 + 2 52 .

2) A perturbed Cholesky decomposition is performed on B. It resultsin B + E =
L LT, E a non-negative diagonal matrix that is implicitly added to B during the de-
composition and contains one or more positive elements if B is not safely positive de-
f1n1te On output, p, contains the maximum elements of E, that is w, = max { p;,j =

..n}.

3) If p, = 0(i.e. E =0), then B = L LT is safely positive definite and the algorithm
terminates, returning B and L. Otherwise, it calculates the number p; that must be
added to the diagonal of B to make (B + p; I) safely strictly diagonally dominant.
Since both (B + _p, I) and (B + p, I) are safely positive definite, it then calculates
= min {p,, p3}, B = B + p I, calculates the Cholesky decomposition L LTof B, and
return Band L.

Results and Discussion

In this section we discuss further refinements of the algorithm proposed above to
accommodate practical calculations.

The matrix G(x,\) which is approximated by the BFGS formula given in (24) is
also updated by two techniques:

i) The modification of the modified Cholesky Factorization,!”511 given above,
and this will be called “Technique I”

ii) We follow Powell’s recommendation [Powell®1%], that will be called
“Technique I1”.

The Powell’s recommendation is as follows:
In formula (24), if the condition,
Z:v.>0

can not be satisfied due to the negative curvature of the objective function, v, is re-
placed by the vector

Y; .=er'Yr+ (1_9r)BrZr

where 0, is the parameter!!:
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1 ifZ7y, = 0.2 (Z' B, Z)

08ZTB, Z,
Z'B,Z, - Z' v,

otherwise

The parameter 0, is determined to satisfy the condition
‘ Zi v, = 02(ZTB,Z,) .
The algorithm was tested for B, = I and for
B, = |f(x,) + llg(xo)l | - I

where 1 is the unit matrix of order n, and |.| is the modulus of the sum of the function
and the Euclidean norm of constraints evaluated at x,

We now give certain examples to apply the algorithm for the two cases:
Casel
Equality constrained problem.
Example
Minimize the function(!4l
f(x) = x; X5 X3 X4 Xs
subject to the constraints

x2+x2+x3+x2+x-10=0,

X X3-5X,x,4=0,

xX+x3+1=0.

Tables (1), (2) and (3) show the results for this problem, where r indicates the iter-
ation number, x, , ... , Xs are the elements of the vector x, (the current point), f = f
(x,) is the function, and |lg(x,)| is the Euclidean norm of constraints evaluated at x,.

Table (1) shows the solution for the initial point (-1, 1, 1,-1,-1) where we selected
B, = L. Table (1) up: shows the result, using Technique I, while Table (1) down:
shows it using Technique II.

Table (2) shows the solution for the initial point (-1, 1, 1, -1, -1.5), where we
selected B, = |f(x,) + [lg(x,)]| | - I for both techniques (Table 2 up: Technique I;
Down: Technique II).

We note that the matrix B, was not positive definite at r = 1 (indicated by the as-
terisk) and was then modified by the corresponding technique to have the next cur-
rent point.
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TABLE 1. up: Technique I,

down: Technique II with B, =1

“: r X X X3 X4 Xs f gl
0 -1.0 1.0 1.0 -1.0 -1.0 -1.0 6.480740698
1*  -0.782515 1.776486  2.048665 -0.782515 -2.109819 -—4.701791 4.155117801
2 -0.759671  1.593748  1.833541 -0.75971  -1.771703 -2.988781 0.55012577
3 0763248 1.598701  1.821861 -0.763248 -1.721225 -9.920459 0.0135756
4 0763596  1.596221  1.826421 -0.7635959 -1.717594 -2.919733 5.71386001E-05
5 0763667 1.595468  1.827634 -0.763667 -1.716935 -2.919702 2.716628E-06
6  -0.763632 1.595824  1.827063 -0.763632 -1.717242 -2.919701 6.0030368E-07
7 0763648 1.595656  1.827332 -0.763648 -1.717097 -2.919701 -1.3464468E-07
8  -0.763641 1.595735  1.827205 -0.763641 -1.717166 -2.919700 2.937478SE-08
9 0763644 1.595698  1.827265 -0.763644 -1.717113 -2.919700 7.1223451E-09
0 -1.0 1.0 1.0 -1.0 -1.0 -1.0 6.480740698
1* —0.782515  1.776485  2.048665 -0.782515 -2.109819 -4.701791 4.155117801
2 -0.764827 1.533736  1.925459 -0.764827 -1.729156 -2.987070 0.604302913
3 07615246 1.682428  1.703842 -0.761525 -1.783456 -2.964804 0.120895158
4 0772533  1.560065 1.897210 -0.772533 -1.683949 -2.974551 0.070491933
5 0763004 1.616181  1.797335 -0.763004 -1.734668 -2.933522 0.017088607
6 0764787 1.586919  1.842042 -0.764487 -1.709465 -2.922773 0.00383146
7  -0.763293  1.600038  1.820450 -0.763293 -1.720866 -2.920378 8.410527E-04
8  -0.763850 1.593707 1.830473 -0.763850 -1.715410 -2.919851 1.873000E-04
9. -0.763551 1.596663  1.825723 -0.763555 -1.717966 -2.919734 4.167593E-05

10 -0.763686  1.595262  1.827966 -0.763688 -1.716757 -2.919708 9.272739E-06
11 -0.763627 1595921  1.826907 -0.763619 -1.717326 -2.919700 2.060767E-06
12 -0.763638 1.595610 1.827406 -0.763668 —-1.717057 - -2.919700 -4.55568E-07

TABLE 2. up: Technique I,

down: Technique II. with B, = [f(x;) + le&x)l |- 1

iter
X, X2 X3 X4 Xs f lex)l

(=

-1.0 1.0 1.0 -1.0 -1.5 -1.5 5.6527095
-0.790062 2.049713 1.850909 -0.790062 -1.762835 —4.174578 4.6335946
-0.774225  1.677623 1.797606  -0.774225 -1.703145 -3.078755 0.7948358
-0.766745 1.583584 1.852772 -0.766745 -1.701676 -2.935227 0.0456123
-0.763835 1.594395 1.829487 -0.763835 -1.716065 -2.920504 0.0010581
-0.763588 1.596304  1.8262955 -0.763588 -1.717656 -2.919715 1.8225101E-05
-0.763670 1595433 1.827691  -0.763670 -1.716904 -2.919703 3.589456E-06
-0.763631  1.595841 1.827036 -0.763631 -1.717257 -2.919701 7.894632E-07
-0.763649 1595648 1.827345 -0.763649 -1.717090 -2.919701 1.749312E-07
-0.763640  1.595739 1.827199  -0.763640 -1.717169 -2.919700 3.9510649E-08
-0.763644  1.595696  1.827268  -0.763644 -1.717132 -2.919700 8.905773E-09

SV NOWN A WN

—
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iter
r Xy X X4 Xs f el
0 -1.0 1.0 1.0 -1.0 -1.5 -1.5 5.6527095
1*  -0.79006 2.049713 1.850909 -0.790062 -1.762835 —4.174578 4.6335946
2 —0.787749  1.634949 1.888268 -0.787749 -1.645451 -3.152304 0.9343125
3 —0.764252  1.592170 1.833953 -0.764252 -1.715895 -2.926449 0.0192923
4 -0.763593 1.596322 1.826285 -0.763593 -1.717665 -2.919788 1.0934702E-04
5 —0.763667 1.595463 1.827643  -0.763667 -1.716930 -2.919703 3.434885E-06
6 -0.763632 1.595826 1.827059 -0.763632 -1.717244 -2.919701 6.269344E-07
7 -0.763648 1.595655 1.827344  —0.763648 -1.717096 -2.919701 1.3886597E-07
8 -0.763641 1.595736 1.827204 -0.763641 -1.717167 -2.919700 3.1289974E-08
9 -0.763644  1.595697 1.827265 -0.763644 --1.717133 -2.919700 6.994948E-09
10 -0.763643  1.595716  1.827237 -0.76343 -1.717149 -2.919700 1.39671042E-09
TABLE 3. TechniqueIl,B, =1
Xy X2 X3 X4 Xs f lgGel|
-1.0 1.0 1.0 -1.0 -1.5 -15 5.6527095
~0.796529 1.933312 2.031977 -0.796529 -1.711102 —4.264811  3.8953451
-0.788279  1.539120 2.021176 —0.788279 -1.574045 -3.042657 0.7662572
—0.764460  1.652087 1.748291 -0.764460 -1.782437 -3.008636  0.2052846
-0.768515 1.568253 1.876148 —0.768515 -1.694284 -2.944246  0.0336552
-0.762995  1.609554 1.806578 -0.762995 -1.728900 -2.92668 0.008598
-0.764373  1.589582 1.837403 -0.764373 -1.711810 -2.921146 0.0018064
—0.763389  1.598687 1.822539 -1.763389 -1.719708 -2.920023 4.010699E-04
—0.763783  1.594323 1.829486 -0.763783 -1.715914 -2.919772  8.937683E-05
-0.763582  1.596368 1.826193 -0.763582 -1.717712 -2.919716  1.989133E-05
-0.763674  1.595400 1.827743 0.763673 -1.716876 -2.919704 4.42576E-06
—0.763628 1.595856 1.827011 -0.763631 -1.717270 -2.919701 9.848276E-07
12 -0.763656  1.595641 1.827356 -0.763644 -1.717084 -2.919701 2.192526E-07
13 -0.763620 1.595743 1.827193  -0.763620 -1.717172 -2.919700 4.945792E-08

Table (3) shows the solution for the same initial point as in Table (2), where B, =
I, using Technique II.

By comparing Table (2) down and Table (3), we note that the number of iterations
required to have the solution with high accuracy is decreased when using B, = 1£(x,)
+ llg(x.)ll | - I. The same result was obtained using Technique 1.

In the following we give some refinements concerning the application of the al-
gorithm to inequality constrained problems.

The relation (16) gives incorrect values of (y,.1); Vi when (y,); approaches zero.
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The numerical experimentation showed that the best choice of (¥r+1);is the follow-
ing:

(¥r+1)i = V=-2g (x) if gi(x) <0 (30)
and
(Yr+1)i =V 2gl (xr) if gi (xr) =0
wherei=m+1,..,p

The choice of y, ., given by (30) will make the algorithm less sensitive to poor val-
ues of (y,);.

In addition the algorithm forces (y,.;); = 0
where g (x;) = max (g;(x,) >0), i=m+1,...,p

We cannot guarantee that when we have g; (x,) > 0, the choice of (y,,,); = 0, Vi,
leads to the required solution of the problem.

The matrix (AT G A —~ A Y?) in relation (13) may not be positive definite when
one or more of the (A,);, i =m + 1, ..., p, are positive. To maintain positive definite-

ness of this matléix we replace every component i of the diagonal matrix A™! Y2, given

yl’ yl' .
as (). by (——). ,i=m+1, ...
(M)‘ y IMI)' P

Case Il

We now show the behaviour of the algorithm on examples of nonlinear optimiza-
tion problems having inequality constraints.

We now show the behaviour of the algorithm, on a simple example. A BASIC test
program was written and applied to the problem.

Minimize the function
fx)=x3+2x3x;+2x

Subject to
g (x)=x3+x,+x3-4=0

LX) =x2-x,+2x3-2=<0
Table (4) gives the values of x,, x,, X3, of a slack variable y,, of the multipliers A,

and X,, of the function f = f(x,, x,, x;) and of the Euclidean norm of the constraints,
le(x.), atr=0,1,2 ..
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TaBLE 4. Technique II, (y, = 0 since g; (x) = 0).
up: B, = [f(x) +lgxoll | - I

down: B, = 1
lt:r Xy X2 X3 y2 A A f ||g(x,.)||
0 00 00 0.0 0.0 0.0 0.0 0. 4.4721360
1 0.0 40 3.0 0.00000 25.5968 7.7082 102 9
2 0.0 1.749998 1.874998 0.00000 11.9990 0.5603 15.23433 1.2656155
3 0.0 1.309782 1.654891  0.00190 3.6431 -2.6585 8.987812  0.04844707
4 0.0 1291532 1.645768  0.00000 42105 -4.2750 8.781994  8.3327046E-05
5 0.0 1291503 1.645751  0.00000 42218 42801 8.781660  7.6413742E-09
6 0.0 1.291503 1.645751 0.00006 42218 —4.2801 8.781660  5.1511994E-09
0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 4.4721360
1 0.0 4.0 2.750 1.0 25.0378 7.1492 935 7.5790109
2 0.0 1986987 1.741002 1.0 12.8890 0.0356 17.22937 1.136436
3 0.0 1297891 1.647891 1.0049 3.0923 -0.0179 8.806900  0.0090675
4 0.0 -0299118 2.128376 0.0 —0.1658 —0.0543  4.637609  2.5662748
5 0.0 1365959 1.682979 0.0 3.7972 -5.3707 9.646309  0.198378
6 0.0 1.292019 1.646010  0.00005 4.0893 -—4.2864 8.787431 0.001366
7 0.0 1.291503 1.645751  0.00000 42218 -4.2801 8.781660  6.2018629E-08
8 0.0 1.291503 1.645751  0.00005 42218 —4.2801 8.781660  6.8981446E-09
9 0.0 1291503 1.645751  0.00000 42218 -4.2801 8.781660  7.1635815E-09

Table (4), up: shows the results, where
B, = [f(x,) + [lg(xo)ll| - 1
Table (4), down: shows the results, where

B,=1,

I is the unit matrix of order n.

‘The algorithm was also applied to Rosen-Suzuki Problem(13.

The matrix B, is selected to be

The problem is:

B, = [f(x,) + gl | - I

Minimize the function

Subject to

fx)=x2+x3+2x3+x3-5x-5%-21x3+7x,

g () =x+x+x+x5+x-X,+X-x-8=<0,

gz(x)='x§+2x§+x§+2xi—xl\—x4—10$0,

g3(x)=2X%+X%+x%+2X1—X2—X4—550
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where x, = (0,1,2,-1) and f(x)) = - 44
Tables (5) and (6) show the solution for the  initial point (0,0,0,0,
V16 , V20 , V10 ). '

TABLE 5. Technique I,
B, = If(x.) + llg(x)l|

iter

- X X X X4 5 Ya ¥ f HS(XJ\!\
0 0 0 0 0 vi§ V2 vi0 0 13.7477
1* 0290957 0.872872  0.290957 —0.290957 4.- 4411 3.1623 -12.8654  11.4398%9
2 0168968 0.826310  0.515102 -0.465481 3.7374 4.0342 2.8228 -17.5932  10.774924
3 0.043453  0.794579 2738494  -1.597991  3.6009 3.9015 2.8347 -54.2644 9136067
4 0219037 0950505  3.000186 -1.579063 0.0 3.3204 2.77152 -58.4579  12.549073
5 0105412 0.758823 2103292 -1.248170 0.0 3.7955 3.4834 -45.1809 1.099245
6  0.120099 0908280 2056588 -0.942685 0.0 0.3347 0.7751 47419 1.55730
7 0309217 1159072 2064798  -0.717407 0.0 1.7356 0.0 -45.2435 1.809037
8 0028190 0.891998  2.073131  -0.969846 0.0 1.7416 0.0 444928 1324838
9 0005525 0956735  2.018494 -0.987516 0.0 1.6045 0.0 440178 1.151626
10 -0.00005 1003201  1.999838 -1.000118 0.0 1.5176 0.0 -4.0078  0.987189
11 -0.000470 0.999212  2.000565 -0.999483 0.0 1.4051 0.0717 44,0000  1.003007
12 0000861 1.00058  2.000305 -0.999010 0.0 1.4163 0.0058 44,0051 1.002260
14 0000126 0999831  2.000138 -0.999868 0.0 1.4163 0.0 ~44.0000  1.000656
17 0.000003 1.000077 1999976 -1.000014 0.0 14147 0.0 440000  0.99974
TABLE 6. Technique II,
B, = [f(x,) + liglxo)l |
It:l' Xy X3 X3 Xy M Y: ¥s Gl I
0 0.0 0.0 0.0 0.0 Vi6 v vio 0 13.7417
1* 0290957 0.872872  0.290957  -0.290957  4.0000 4411 3.1623 ~12.8654  11.439899
2 0227057 0982069 1342288  -0.133%672 3.7374 4.0342 2.8228 -30.5384  8.091270
3 0463250 1346000 2216928  -0.312471  2.9806 3.5424 2.2467 458355 2.4724919
4 0056752 0461095  3.094950 -0.429753 0.0 1.5509 0.0 -51.0335  7.097985
§ 0209451 1001272 2369861 0672923 0.0 1.2244 3.1241 457049 1.454993
6 0107105 1495515  L877370 -1.246395 0.0 1.0457 0.0 441916  2.6103846
7 0114579  0.989740  2.149807 0923538 1.2882 0.0 0.7835 448975  0.859676
8 -0.041360 0989593 2032260 -1.191543 0.0 1.1507 0.8150 ~45.0085  0.7772435
9 -0.033777 1028681 2072073  -0.904652 0.0 0.5707 0.6812 -44.3559  1.0302519
10 0023261 L113711  2.000831 0953743 0.0 1.4239 0.0 442213 0.7770819
11 0.001857 0968718 2013420 -0.994821 0.0 1.2375 0.0 -44.0626  1.0974758
12 000219 101305 1995288  -1.003489 0.0 1.4812 0.2102 -44.0061  0.9510014
13 0003252 0997410 2007843 0986850 0.0 1.3791 0.0677 44,0444 1.047794
14 0002902 1.002489 1998196 -1.001312 0.0 1.4475 0.0 440051 0993577
15 -0000162 0986744  2.003934 -0.997951 0.0 1.4097 0.0 -44.0001 1046997

18 0.000293  1.000646 1999756  -1.000097 0.0 1.4187 0.0 —44.0007 0998206
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Table (5) shows the result using technique I, where the solution is obtained for less
than 17 iterations.

Table (6) shows the result using the technique II, where the solution is obtained for
more than 18 iterations.

The value of A is (-0.9999, -1.796E-09, —2.0000).
At the solution, we have
x, = (0,1,2,-1), y = (0, V2 ,0),f=-44, ] gx)l =1

We note that the negative sign of A, of Table (4) and that for A, A,, A3, of the last
example is due to the selection of positive sign of the second term of the right hand
side of the equation of the Lagrangian function (3).

We note also that in Tables (5) and (6), the asterisk indicates that the matrix B,, at
r = lis indefinite. The calculated eigenvalues shows that they lie in the range -82.96
to 41.75. The matrix B was then modified by the corresponding technique to have the
next current point.

The proposed algorithm may be useful for solving constrained optimization prob-
lems that use Lagrangian functions. It does not suffer from the increased dimension,
numerical instability and presence of singularities caused by the presence of slack
variables in inequality problems. It maintains the positive definiteness at each itera-
tion and the selection of B, in BFGS formula, to be the modulus of the sum of the
function and the Euclidean norm of constraints may be useful for acceleration of con-
vergence, and for convergence from initial points that are far from the solution.
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